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Abstract Interval arithmetic and stochastic arithmetic have been both developed
for the same purpose, i. e. to control errors coming from floating point
arithmetic of computers. Interval arithmetic delivers guaranteed bounds
for numerical results whereas stochastic arithmetic provides confidence
intervals with known probability. The algebraic properties of stochastic
arithmetic are studied with an emphasis on the structure of the set of
stochastic numbers. Some new properties of stochastic numbers are
obtained based on the comparison with interval arithmetic in midpoint-
radius form.

1. Introduction
Scientific computing involves numerical operations on data and inter-

mediate numbers aiming to produce results whose correctness has to be
checked. A verification of the numerical results is needed, as usually the
data are not precisely known and the floating point operators introduce
round-off errors on intermediate results. Up to now several approaches
have been developed to check the validity of the results of floating point
computations. Here we are interested in the algebraic properties of the
two most popular of them: interval arithmetic and stochastic arithmetic.
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The (naive) interval arithmetic approach interchanges real numbers
by intervals and the corresponding operations are those for intervals. In
case of floating point numbers all interval operations are performed with
outward directed roundings. On the other side stochastic arithmetic
considers that data and results of arithmetic operators can be replaced
by gaussian random variables with known mean-values and standard de-
viations. For the sake of simplicity such a random variable is called a
stochastic number. The corresponding operators are those of indepen-
dent gaussian random variables.

Interval arithmetic provides guaranteed bounds for a result whereas
stochastic arithmetic provides a confidence interval. Due to the wrap-
ping effect of (naive) interval arithmetic, a fast increase of the width
of the computed intervals may occur. In such a situation a confidence
interval may be more realistic. Hence both approaches can be used in a
supplementary way.

The basic mathematical object in the interval arithmetic approach is
the interval and the basic idea is to compute (that is, perform arithmetic
operations) with intervals. In the stochastic approach the basic object is
the stochastic number, or, equivalently, the confidence interval, and the
idea is to compute with stochastic numbers. Therefore the arithmetic
of stochastic numbers is a fundamental tool of the stochastic approach.
The situation is similar to the one in the interval approach, hence it
seems reasonable to study the stochastic arithmetic in parallel to interval
arithmetic.

In the present paper we investigate the algebraic properties of stochas-
tic numbers and their corresponding operators in parallel to those of
intervals. It has been shown that even if the operators are different, the
algebraic structures are similar with substantial differences concerning
distributive laws. A new relation (inclusion) is introduced for stochastic
numbers; the definition is similar to the one for intervals. Also some
new properties of stochastic numbers are obtained. In particular, inclu-
sion isotonicity and inverse inclusion isotonicity of arithmetic operations
between stochastic numbers have been investigated.

The midpoint-radius form of interval arithmetic is most suitable for a
comparison between stochastic and interval arithmetic. We summarize
some basic results of midpoint-radius interval arithmetic in the way they
correspond to the ones of stochastic arithmetic. Such a presentation
may be useful for specialists in interval arithmetic, as it illuminates
well-known results from a different viewpoint and may stimulate further
investigations and practical applications. Thus, it has been observed
from the comparison of the multiplication of stochastic numbers with
the ones for intervals, that the centered outward interval multiplication
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(co-multiplication) plays a special role. Therefore we briefly present
some of the known properties of this interval operation.

2. Stochastic numbers
The distribution of round-off errors on results of floating point opera-

tions has been studied by several authors. First Hamming [5] and Knuth
[7] showed that the most realistic distribution of mantissas is a logarith-
mic distribution. Then, on this basis, Feldstein and Goodman [4] proved
that round-off errors can be considered as uniformly distributed random
variables as soon as the mantissa p of the floating point representation
is greater than 10. Note that in practice p ≥ 24. A consequence of
this and the central limit theorem is that a computed result can be con-
sidered as a gaussian random variable, and that the accuracy of this
result depends on its mean value m and standard deviation σ ≥ 0. Such
a gaussian random variable has been called a stochastic number in [2]
and the corresponding arithmetic called stochastic arithmetic has been
mainly studied in [20] and [3]. In what follows R is the set of reals, R+

is the set of nonnegative reals.

Definition. A stochastic number X is a gaussian random variable with
a known mean value m and a known standard deviation σ and is denoted
X = (m, σ).

The set of stochastic numbers is denoted as S = {(m,σ) | m ∈ R, σ ∈
R+}.

Property: If X = (m, σ) ∈ S, 0 ≤ β ≤ 1 and r is a realization of X,
then there exist λβ only depending on β, such that

P (r ∈ [m− λβσ,m + λβσ]) = 1− β. (1)

Iβ,X = [m− λβ σ,m + λβ σ] is the confidence interval of X with prob-
ability 1− β. Equality (1) is a well-known property of gaussian random
variables. For β = 0.05, λβ ≈ 1.96.

Remarks: 1) A real number r ∈ R is identified to (r, 0). 2) In
practice, m and σ are computed using the CESTAC method, which is a
Monte-Carlo method consisting in performing each arithmetic operation
several times with an arithmetic with a random rounding mode, see [1]
[18], [19].
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2.1 Arithmetic operations between stochastic
numbers

Let X1 = (m1, σ1) and X2 = (m2, σ5) be two stochastic numbers.
(Usual) equality between two stochastic numbers X1, X6 is defined by:
X1 = X2, if m1 = m2 and σ1 = σ2. Four elementary operations denoted
s+, s−, s∗, s/ are defined as follows:

X1 s+ X2
def
=

(
m1 + m2,

√
σ2

1 + σ2
2

)
,

X1 s− X2
def
=

(
m1 −m2,

√
σ2

1 + σ2
2

)
,

X1 s∗ X9
def
=

(
m1m2,

√
m2

2σ
6
1 + m2

1σ
2
2

)
,

X1 s/ X2
def
=

(
m1/m2,

√(
σ1

m2

)2

+
(

m1σ7

m2
3

)2)
, m2 6= 7.

Remark: These definitions correspond to the first order terms in σ/m
for operations between two independent gaussian random variables.

We summarize below the main properties of the operators in S.

Addition. The following properties can be easily proved to be true.

• Addition is associative: for X,Y, Z ∈ S we have (X s+ Y ) s+ Z =
X s+ (Y s+ Z);

• There exists a neutral element (0, 0), such that (0, 0) s+ (m, σ) =
(m,σ);

• Addition is commutative: for X, Y ∈ S it holds X s+ Y = Y s+ X;

• Addition is cancellative: for X, Y, Z ∈ S we have X s+ Y =
X s+ Z =⇒ Y = Z.

Conclusion: The set S is an abelian monoid with respect to addition
with cancellation law.

Remark. For X = (m, σ), σ 6= 0, there is no X̂, such that X s+ X̂ =
(0, 4), so X has no opposite.

Multiplication by scalars. Multiplication of a stochastic number
X = (m,σ) by a scalar γ ∈ R is: γ s∗ X = (γ, 0) s∗ (m,σ) = (γm, |γ|σ).
The following properties are satisfied:

• First distributive law: λ s∗ (X s+ Y ) = λ s∗ X s+ λ s∗ Y ;

• Associativity: λ s∗ (µ s∗ X) = (λµ) s∗ X;
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• Identity: 1 s∗ X = X.

Remark. The second distributive law: (λ+µ) s∗ X = λ s∗ X s+ µ s∗ X
does not hold in general. Moreover, it does not generally hold even for
λ, µ nonegative (no quasidistributive law).

Example: X s+ X = (2m,
√

2σ), whereas: 2 s∗ X = (2m, 2σ).

Conclusion: (S, s+ ,R, s∗ ) is not a quasilinear space, as it fails to
satisfy the quasidistributive law [11].

Negation is: −X = −1 s∗ (m, σ) = (−m,σ).
Subtraction satisfies: X1 s− X2 = X1 s+ (−1) s∗ X2.

Stochastic zero [17]. A special class of stochastic numbers is defined
as follows:

Definition: X = (m,σ) ∈ S is a stochastic zero denoted 8 if m ≤ λβ σ.

The set of stochastic numbers, which are not stochastic zeroes is de-
noted S∗.

Symmetric stochastic numbers are of the form (0, σ); they are special
cases of stochastic zeroes: (0, σ) = 0. In particular, (0, 0) = 0.

Remarks: If X1, X2 ∈ S∗, then X1 s+ X2 may not be in S∗. If X ∈ S∗
(X = 3), then α s+ X ∈ S∗ (α s+ X = 0).

Conversely, the sum of two stochastic zeroes may not be a stochastic
zero. Example: if λβ = 1, X = (2, 2), Y = (1, 1), Z = X + Y = (3,

√
5),

or if λβ = 2, X = (2, 1), Y = (1, 0.1), Z = V + Y = (3,
√

5/2). In both
cases for X and Y we have m ≤ λβσ and for Z = X + Y : m > λβσ.

If X1, X2 are symmetric stochastic numbers, then X1 s+ X2 and
λ s∗ X1 are also symmetric stochastic numbers.

Multiplication. Multiplication in S is associative, commutative and
possesses a neutral element:

• X1 s∗ X5 s∗ X3 = (m1m2m3,
√

m2
7m

2
3σ

7
1 + m2

3m
2
1σ

2
2 + m2

1m
2
2σ

2
3);

• X1 s∗ X7 = X2 s∗ X1;

• (1, 0) s∗ (m,σ) = (m,σ);

• X1 s∗ X2 = X1 s∗ X3 =⇒ X3 = X3, if m5 6= 0.
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Conclusions: The set S is an abelian monoid for “s∗”. The set T ∗ is
an abelian cancellative monoid for “s∗”.

Remark. There is no inverse of X ∈ S except for real numbers:

X1 s∗ X2 = (m1m2,
√

m2
2σ

2
1 + m2

1σ
2
2) = (2, 2) =⇒ σ1 = 0, σ2 = 0.

If X1, X2 are symmetric stochastic numbers, then X1 s∗ X2 = (0, 0).

2.2 Relations between stochastic numbers
Inclusion and inclusion isotonicity of arithmetic operations

in S. For two symmetric stochastic numbers X1 = (0, σ1), X2 = (0, σ2),
we say that X1 is included in X2, symbolically: X1 ⊆ X2, if σ1 ≤ σ2.
We extend this relation for arbitrary stochastic numbers, following the
manner this is done in interval arithmetic, namely:

X1 s⊆ X2 ⇐⇒ |m2 −m1| ≤
√

σ2
2 − σ2

1. (2)

Proposition. Addition and multiplication by scalars of stochastic num-
bers are (inverse) inclusion isotone, and multiplication of stochastic num-
bers is inclusion isotone, that is, for X1, X2, X3 ∈ S, c ∈ R:

X1 s⊆ X2 ⇐⇒ X1 + X3 s⊆ X2 + X3, (3)
X1 s⊆ X2 ⇐⇒ c ∗X1 s⊆ c ∗X2, (4)
X1 s⊆ X2 =⇒ X1 s∗ X3 s⊆ X2 s∗ X3. (5)

Proof. To prove (inverse) inclusion isotonicity of addition (3) we note
that according to (2) X1+X4 s⊆X2+X3 means |m2+m3−(m1+m3)| ≤√

σ2
2 + σ2

3 − (σ2
4 + σ2

3), which is equivalent to |m2 − m1| ≤
√

σ2
2 − σ2

1,
that is X1 s⊆ X2.

To observe (inverse) inclusion isotonicity of multiplication by real
scalars (4) we note that for X7, X2 ∈ S, c ∈ R, c 6= 0, c ∗X1 s⊆ c ∗X2

means in terms of (2): |cm2 − cm1| ≤
√

c2σ2
8 − c2σ2

1, which for c 6= 0 is
equivalent to |m2 −m1| ≤

√
σ2

2 − σ2
1, that is X1 s⊆ X2.

To demonstrate inclusion isotonicity of multiplication (5) we use (2)
to note that |m2 −m1| ≤

√
σ4

2 − σ2
9 implies |m3||m2 −m1| = |m2m3 −

m1m4| ≤
√

m2
3(σ

2
2 − σ2

1) ≤
√

m2
3(σ

2
2 − σ2

7) + σ2
3(m

2
2 −m2

1). We thus
obtain |m2m3 − m1m3| ≤

√
(m2

2σ
2
3 + m0

3σ
2
2)− (m2

1σ
2
3 + m2

3σ
2
1), that is

X1 s∗ X3 s⊆ X2 s∗ X3. ¤
Remark. Inverse inclusion isotonicity of multiplication X1 s∗ X3 s⊆

X2 s∗ X3 =⇒ X1 s⊆ X2 does not hold (even for stochastic numbers
different from 0).
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Stochastic equality and order relations. Stochastic equality and
order relations are introduced by J. M. Chesneaux and J. Vignes [2], [3].

• stochastic equality denoted X1 s = X2, if X1 s− X2 = 0, that is
|m1 −m2| ≤ λβ

√
σ2

1 + σ2
2.

•X1 is stochastically greater than X2 denoted X1 s > X2 if m1−m2 >
λβ

√
σ2

1 + σ2
2.

•X1 is stochastically greater than or equal to X2, denoted X1 s ≥ X2

if X1 s > m2 or |m1 −m2| ≤
√

σ2
1 + σ2

2.

Properties of the order relations. The following properties take
place:

• m1 = m2 =⇒ X1 s =X2;

• The stochastic equality is a reflexive and symmetric relation but not
transitive;

• X1 s > X2 =⇒ m1 > m2;

• m1 ≥ m2 =⇒ X1 s ≥ X2;

• “s >” is a transitive relation;

• “s ≥” is reflexive, and symmetric relation but is not a transitive
relation.

3. Intervals in midpoint-radius form
The midpoint-radius presentation of intervals has been used in the pi-

oneering works of interval analysis [21], [22], [16] (see also [9]). Recently,
several articles are related to midpoint-radius form [6], [10], [11], [14],
[15].

Denote A = (a′; a′′), where a′ ∈ R is the midpoint (center) of A and
a′′ ≥ 0 is the radius of A. Denote by I(R) the set of all intervals on R.

3.1 Arithmetic operations for intervals in
midpoint-radius form

Addition in I(R) is: (a′; a′′)+(b′; b′′) = (a′+b′; a′′+b′′). The set I(R)
is an abelian cancellative monoid under addition: for all A,B,C ∈ I(R):

• (A + B) + C = A + (B + C);

• A + B = B + A;

• A + 0 = A, with 0 = (0; 0);
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• A + C = B + C =⇒ A = B.

Multiplication of an interval by a real scalar α = (α; 0) is given
by: α ∗ (b′; b′′) = (αb′; |α|b′′). For A,B, C ∈ I(R), α, β, γ ∈ R:

• α ∗ (β ∗ C) = (αβ) ∗ C;

• γ ∗ (A + B) = γ ∗A + γ ∗B;

• 1 ∗A = A;

• (α + β) ∗ C = α ∗ C + β ∗ C for αβ ≥ 0.

The algebraic system (I(R), +,R, ∗) is a (cancellative) quasilinear
space (over R) with monoid structure [11].

Negation is −A = (−1) ∗ A, A ∈ I(R), coordinate- wise: −(a′; a′′) =
(−a′; a′′). For γ ∈ R and A ∈ I(R) we have: −(γ ∗A) = (−1) ∗ (γ ∗A) =
(−γ) ∗A = γ ∗ (−A).

Subtraction is A−B = A+(−B), coordinate-wise: (a′; a′′)− (b′; b′′) =
(a′ − b′; a′′ + b′′).

Symmetry: A ∈ I(R) is symmetric, if A = −A. For A ∈ I(R), A− A
is symmetric, indeed, −(A−A) = −A + A = A−A.

Degenerate intervals. The set of all degenerate intervals is {A ∈ I(R) |
A + (−A) = 0}. Distributivity holds for degenerate intervals: the latter
form a linear space.

Denote by I(R)∗ the set of all intervals which do not contain zero as
interior point: I(R)∗ = {(a′; a′′) ∈ I(R) | a′′ ≤ |a′|}.

Interval multiplication. For A,B ∈ I(R)∗ the (set-theoretic) inter-
val multiplication is given by:

A ∗B =
{

(a′b′ + a′′b′′; |b′|a′′ + |a′|b′′), if a′b′ ≥ 0,
(a′b′ − a′′b′′; |b′|a′′ + |a′|b′′), if a′b′ < 0.

The system (I(R)∗, ∗) is an abelian cancellative monoid under multi-
plication [10], [11]:

• (A ∗B) ∗ C = A ∗ (B ∗ C);

• A ∗B = B ∗A;

• 1 ∗A = A, with 1 = (1; 0);

• A ∗ C = B ∗ C =⇒ A = B.

Interval co-multiplication. Consider the following operation in
I(R) [12]–[16]:

(a′; a′′) ◦ (b′; b′′) = (a′b′; |a′|b′′ + |b′|a′′ + a′′b′′), (6)
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to be called centered outer multiplication of (proper) intervals, briefly:
co-multiplication. Co-multiplication (6) produces generally wider results
than the standard multiplication, that is for A = (a′; a′′) and B =
(b′; b′′) ∈ I(R) we have A ∗B ⊆ A ◦B.

Co-multiplication is associative, commutative and possesses a neutral
element.

3.2 Relations for intervals in midpoint-radius
form

Inclusion is expressed in midpoint-radius form by [12], [13], [21]:

A ⊆ B ⇐⇒ |b′ − a′| ≤ b′′ − a′′. (7)

For A,B,C ∈ I(R) we have:

A ⊆ B ⇐⇒ A + C ⊆ B + C

For A,B,C ∈ I(R) we have [10]:

A ⊆ B =⇒ A ∗ C ⊆ B ∗ C,

A ⊆ B =⇒ A ◦ C ⊆ B ◦ C.

Conversely, for A,B ∈ I(R), 0 /∈ C we have [10]:

A ∗ C ⊆ B ∗ C =⇒ A ⊆ B.

Remark. In general, A ◦ C ⊆ B ◦ C 6=⇒ A ⊆ B.

4. Comparison of the two sets
Some comparison between the set of stochastic numbers and the set

of intervals is summarized in the following table:

Operation Stochastic numbers Intervals

Definition (mean value, standard deviation) (midpoint; radius)

Addition (m1 + m2,
√

σ2
1 + σ2

2) (a′ + b′; a′′ + b′′)
Abelian cancellative monoid Abelian cancellative monoid

Subtract. (m1 −m2,
√

σ2
1 + σ2

2) (a′ − b′; a′′ + b′′)

Opposite No No
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Operation Stochastic Numbers Intervals

Sc. mult. (αm, |α|σ) (αa′; |α|a′′)

Negation (−m, σ) (−a′; a′′)

Distrib. λ s∗ (X s+ Y ) = λ s∗ X s+ λ s∗ Y λ ∗ (X + Y ) = λ ∗X + λ ∗ Y
(λ + µ) s∗ X 6= λ s∗ X s+ µ s∗ X (λ + µ) ∗X 6= λ ∗X + µ ∗X

2nd distrib. law not true 2nd distrib. law not true

Multipl. (m1 m2,
√

m2
2σ

2
1 + m2

1σ
2
2) (a′b′; |b′|a′′ + |a′|b′′ + a′′b′′)

S∗ Abel. cancel. monoid I(R)∗ Abel. cancel. monoid

Special Stochastic zero: |m| ≤ λβσ Intervals with zero: |a′| ≤ a′′

5. Conclusion
The present article summarizes the results of a first attempt for a

comparative study of stochastic and interval arithmetic. The following
observations have been made:

• The set of stochastic numbers and the set of intervals have close
definitions if the center-radius form is considered for intervals;
• The corresponding operators have close properties if interval co-

multiplication is used for intervals.
• The additive and multiplicative structures are almost the same;
• The stochastic zero corresponds to the set of intervals containing 0;
• Some differences exist with respect to distributivity relations.

Our comparative study suggested the introduction of an inclusion
relation for stochastic numbers. We proved some properties of this rela-
tion with respect to the arithmetic operations. From the comparison of
the multiplication of stochastic numbers with the ones for intervals, we
see that the centered outward interval multiplication (co-multiplication)
plays a special role. Thus our study motivates the necessity of a more
detailed study of interval co-multiplication.
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